An evolutionarily conserved long noncoding RNA TUNA controls pluripotency and neural lineage commitment.

نویسندگان

  • Nianwei Lin
  • Kung-Yen Chang
  • Zhonghan Li
  • Keith Gates
  • Zacharia A Rana
  • Jason Dang
  • Danhua Zhang
  • Tianxu Han
  • Chao-Shun Yang
  • Thomas J Cunningham
  • Steven R Head
  • Gregg Duester
  • P Duc Si Dong
  • Tariq M Rana
چکیده

Here, we generated a genome-scale shRNA library targeting long intergenic noncoding RNAs (lincRNAs) in the mouse. We performed an unbiased loss-of-function study in mouse embryonic stem cells (mESCs) and identified 20 lincRNAs involved in the maintenance of pluripotency. Among these, TUNA (Tcl1 Upstream Neuron-Associated lincRNA, or megamind) was required for pluripotency and formed a complex with three RNA-binding proteins (RBPs). The TUNA-RBP complex was detected at the promoters of Nanog, Sox2, and Fgf4, and knockdown of TUNA or the individual RBPs inhibited neural differentiation of mESCs. TUNA showed striking evolutionary conservation of both sequence- and CNS-restricted expression in vertebrates. Accordingly, knockdown of tuna in zebrafish caused impaired locomotor function, and TUNA expression in the brains of Huntington's disease patients was significantly associated with disease grade. Our results suggest that the lincRNA TUNA plays a vital role in pluripotency and neural differentiation of ESCs and is associated with neurological function of adult vertebrates.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The long noncoding RNA Pnky regulates neuronal differentiation of embryonic and postnatal neural stem cells.

While thousands of long noncoding RNAs (lncRNAs) have been identified, few lncRNAs that control neural stem cell (NSC) behavior are known. Here, we identify Pinky (Pnky) as a neural-specific lncRNA that regulates neurogenesis from NSCs in the embryonic and postnatal brain. In postnatal NSCs, Pnky knockdown potentiates neuronal lineage commitment and expands the transit-amplifying cell populatio...

متن کامل

Conserved long noncoding RNAs transcriptionally regulated by Oct4 and Nanog modulate pluripotency in mouse embryonic stem cells.

The genetic networks controlling stem cell identity are the focus of intense interest, due to their obvious therapeutic potential as well as exceptional relevance to models of early development. Genome-wide mapping of transcriptional networks in mouse embryonic stem cells (mESCs) reveals that many endogenous noncoding RNA molecules, including long noncoding RNAs (lncRNAs), may play a role in co...

متن کامل

The long noncoding RNA lncR492 inhibits neural differentiation of murine embryonic stem cells

RNA interference (RNAi) screens have been shown to be valuable to study embryonic stem cell (ESC) self-renewal and they have been successfully applied to identify coding as well as noncoding genes required for maintaining pluripotency. Here, we used an RNAi library targeting >640 long noncoding RNAs (lncRNA) to probe for their role in early cell differentiation. Utilizing a Sox1-GFP ESC reporte...

متن کامل

Development: Sketch for a Theory of Oct4

How is it that Oct4, a transcription factor that controls pluripotency in stem cells, also controls lineage specification? A recent study investigating common Oct4 targets in vertebrate species indicates an evolutionarily conserved role in mediating cell adhesion. This finding may help decipher Oct4's versatility in governing stem cell behaviors.

متن کامل

Braveheart, a Long Noncoding RNA Required for Cardiovascular Lineage Commitment

Long noncoding RNAs (lncRNAs) are often expressed in a development-specific manner, yet little is known about their roles in lineage commitment. Here, we identified Braveheart (Bvht), a heart-associated lncRNA in mouse. Using multiple embryonic stem cell (ESC) differentiation strategies, we show that Bvht is required for progression of nascent mesoderm toward a cardiac fate. We find that Bvht i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular cell

دوره 53 6  شماره 

صفحات  -

تاریخ انتشار 2014